
Talisman: A Prototype Expert System for Spelling Correction

Hal Berghel
Cecily Andreu

Department of Computer Science
University of Arkansas

Abstract:

This paper reports on the status of TALISMAN, a logic-based spelling assistance package for
0 MS-DOS microcomputers which is currently being refined and tested in our laboratory. The

essence of the package is described, and is contrasted with current products. The uniqueness of
the approach lies in the fact that formal definitions of spelling errors are directly encoded into the
program. Some recent benchmark results indicate that TALISMAN may actually out-perform
competitive products as well as exceed their accuracy and overall effectiveness.

Introductioq

Spelling assistance programs are expected to do at least three
things: determine whether each and every word-token is
correctly spelled (verification), provide some help for the user
toward correcting any errors (correction), and standardize the
document so as to facilitate the above (normalization). We will
discuss each of these stages of document processing, insofar as
it relates to TALISMAN, below.

The most challenging part of spelling assistance software is the
correction stage. In our view, there are two basic classes of
spelling errors to be detected: typing errors and knowledge
errors. Typing errors are simply data entry errors. They are
easy to define, there are considerable empirical data on their
frequency and distribution (see references [5] [6] [[9] [17] [18]),
and they fall into a small number of categories. Exactly the
opposite is true of knowledge errors: their descriptions are much
more complex which makes them more difficult to classify, and
there are many more types of them. As we explain, below,
TALISMAN is currently implemented for typing errors and
some closely related knowledge errors. It is restricted to these
errors primarily for testing and benchmarking purposes since
most current products focus on them. After the testing cycle is
completed, the next state of development of the product will
attempt to deal with knowledge errors, as such and in general.

We approach spelling correction from the point of view of
‘generic error types’. Generic error types are orthographical
transformations of words. For example, character transposition
is a generic error type, including the special cases of
transposition of adjacent characters, transposition of two
characters around a third, and so forth. The three additional
generic errors which are of present interest are insertion, deletion
and substitution, in any number of forms. It should be
mentioned that some current products define spelling corruption
graphemically. (A grapheme is an orthographical approximation
of a phonetic representation of a word). We avoid this type of
representation because of the inherent imprecision.

Table 1 ill&rates the distinction between the two classes of
spelling errors. This reveals several error types from both
sources with which we are currently experimenting. As is
evident from the table, our four generic error types account for
seven types of typing errors and at least four types of knowledge
errors. We have previously referred to these four generic error
types as Damerau errors [3], after the author of the first
published report of their prominence among typing errors [5].
Of course, our ultimate goal will be to identify and prioritize a
multitude of generic error types, so that the greatest range of
spelling errors of all types may be recognized.

In our view there are at least three levels of sophistication for
spelling correction software. At the lowest level, the software
may determine and prioritize correctly spelled words which are
orthographically and/or phonologically similar to the word
token. This is the level at which most products operate,
although with varying levels of success. With TALISMAN
we achieve, in terms of information theory [161, 100%
precision, complete recall and zero fallout (with respect to the
generic error types) because the logical description of the error
type is directly encoded into the program (i.e., no
approximations or metrics are used). For further discussion of a
logic-based approach to approximate string matching, see [3].

107

. . t Nor-

The first phase of spelling checking is document normalization.
This refers to a procedure, or set of procedures, which convert
the electronic documents into a Canonical fem. This entails at
least the following sorts of operations:

a) standardization of character encodings with regard to case,
font, character set, etc.

b) recognition of word boundaries (by spacing, punctuation,
hyphenation and quotation devices, etc.,

c) removal of formatting symbols (so-called ‘control
sequences’), and

d) transformation of modified ASCII to standard ASCII
notation.

We may best illustrate these operations by example.

TABLE 1
SPELLING ERRORS

I. Typographical Errors (decreasing frequency of occurrence
[Peterson])

m sneric error u
1. character transposition transposition
2. extra character insertion
3. missing character omission
4. wrong character substitution
5.2 extra characters insertion
6.2 missing characters omission
7.2 characters transposed around a third transposition

II. Knowledge Errors (miscellaneous - frequency unknown)
!2m?x Peneric
1. orthographical
1. doubled consonants
a. unnecessary doubling (e.g., gallactic) insertion
b. failure to double (e.g., mispelling) omission

2. mistaken vowel order (e.g., heirarchy) transposition
3. mistaken consonant order (e.g., nmemonic) transposition

B. phonological
1. errors from mispronunciation (e.g., numonia) ?
2. homonymal errors (e.g., boar for bore) ?

C. syntactic
1. prefix confusion (e.g., priempt)
2. suffw confusion (number,case)
3. gender confusion re: borrowed words

D. semantic

?
?
?

1. confusing unrelated words with similar
spellings (e.g., diary and dairy) ?

The middle level would require that the software identify the
correctly spelled words which are grammatically similar to the
token as well as being orthographically or phonologically
similar. This objective, which requires the inclusion of a parser
into the spelling corrector, is currently being investigated by the
more innovative software houses. We see this objective as
attainable (to a certain degree, at least) with current technology
within the very near future. For a brief discussion of the
connection between parsing and our approach to spelling
correction, see [2].

The highest level would require the identification of correctly
spelled words which are grammatically a semantically
appropriate given the context. This would require some form of
natural language ‘understanding’, which is, as of this writing,
beyond current technological limits.

We see TALISMAN as a paradigm for rigorous and effective,
low-level, spelling correction with considerable potential for the
middle level as well. What we describe, below, are the major
characteristics of this product as far as it relates to the general
problem of spelling assistance in text editing environments.
Admittedly, we use the term ‘expert system’ loosely. The
‘expert’ component of TALISMAN amounts to a direct
encoding of our knowledge of certain categories of spelling
errors, as expressed in first order logic.

The TALISMAN prototype was specifically written for
WORDSTAR documents because of our familiarity with the
software, and its enormous user-population. Since
WORDSTAR only supports one font and character set, a) was
accomplished easily: only case conversion was involved. b)
was accomplished with similar ease. We define words to be
character strings bounded by spaces (hex 20), punctuation
symbols (I.‘, I?‘, I!‘. ‘,I, I;‘, I:‘) or other grammatical devices
(single and double quotation marks, parentheses, brackets and
braces, special characters, etc.). Thus, the removal of these
characters is straightforward for the most part. The exceptions
involve single quotation marks which identify contractions, and
hyphens which signify compound words. These are handled
with slightly greater finesse.
One type of formatting symbol is the embedded toggle.
Examples include boldface (hex 02), underscore (hex 13), sub-
and super-scripts (hex 16 and 14, respectively), and so forth.
Another type is the ‘dot’ command which is essentially a
‘command line’ p k’ JCL. A typical example is ‘.LH <ARG>’
(hex 2E 4C 48 cARG>), for control of line height. Similar
controls are available for paper length, character width, page
offset, margins, heading/footing identifiers, and page breaks.
Another category of format symbol is a fill-character. To
illustrate, multiple-line spacing is accomplished by padding the
end-of-line marker with multiple <CR>+<LF> (hex OD OA).
Text centering is achieved by inserting the appropriate number of
spaces (hex 20) before the first text character. Left margin
control involves padding the first n spaces of each line with
character hex AO, and so forth.

The last category of format symbol involves the transformation
of a modified ASCII string to its alpha-numeric equivalent. Like
many word processing packages, Wordstar uses a high-order bit
shift for control. For example, soft carriage returns are
identified by hex 8D OA, rather than hex OD OA for hard
carriage returns. Similarly, a ‘soft line’ (e.g., one which is
alterable under formatting) is distinguished from a ‘hard line’ by
setting the high order bit high for the last byte of every word in
the line.
SuellinrJ Verificatioa

The spelling verification component of a spelling assistance
package attempts to verify that a target word in the electronic
document is correct. If this is confirmed, attention is directed to
the next word. Only upon failure is the correction component
invoked.

108

Spelling verification can be conducted in two basic ways:
deterministically and probabilistically. In a deterministic
approach, the lexicon is consulted directly for each target. This
involves standard techniques for lexical searching, and is usually
performed with sublinear algorithms [4][7]. An alternative is to
estimate the likelihood that the target is misspelled. If the
probability exceeds some threshold, the target is turned over to
the correction procedures. If not, it is assumed to be correct. A
paradigm case of this approach is constituent analysis [18].
Naturally, both approaches have strengths and weaknesses: the
deterministic approach is generally more accurate while the
probabilistic approach is potentially faster.

Currently, TALISMAN uses the deterministic approach. As is
common for spelling assistance software, the searches are
defined over a hierarchy of lexicons: a common-word lexicon
retained in primary memory, a main lexicon which resides on
secondary storage and a user-defined dictionary which may be
modified at any time. At this time, the common-word lexicon
consists of the first 100 words of the “Brown Corpus” [8], and
the main lexicon consists of a 10,000 word list developed in our
lab. Our verification routine, written in C, consults the primary-
resident dictionary first, and only upon failure consults the main
and then user-defined dictionaries.

The ‘business part’ of TALISMAN and the part which
distinguishes it from more conventional spelling assistance
packages is the correction routine. This procedure, written in
Prolog, directly encodes set-theoretical descriptions of errOr
types into the program. Since no similarity measures are used,
the method results in the generation of a set of alternative words
which are related to the target in exactly the way intended.

While a thorough description of the corrector is beyond the
scope of this paper, and has been dealt with elsewhere [3], a
brief overview will provide a fuller understanding of the
uniqueness of TALISMAN. Assume, for the moment, that
one were interested in including in the list of suggested
alternative words for a purported misspelling those words which
were different by having one more character. Let’s define these
words extensionally by the set 0 (for Qmissioq of a character).
Let s be an arbitrary string and y be a character. We
extensionally define the set, 0, as the set of character strings
similar to clc2c3...cn-lcn such that

SE 0 <-> (3y)(S=((yClC2C3...Cn-lCn) V (ClyC2C3...Cn-lCn)V...

V (ClC2C3...Cn-lCny).

Given this set-theoretical description, the conversion into a logic
programming language (in our case, Prolog) is trivial. The
resulting clause set is

is~an~element~of~set_00():-
adding_a-character(X,Y),
legitimate-word(Y).

where
adding-a-character(X,[YIX]);
addinga~character([UIV],[UIW]):-

adding-a-characte$V,W).

This clause set reads as follows: a string, X, is an element of the
set in question (namely 0) if the result of adding a character to
the string is itself a legitimate word. Adding a character is then
defined recursively, using Prolog list notation. The result is that
a string is an element of the set just in case it is both one
character longer and a legitimate word, which is the literal
description of character omission.

The mechanism by which the corrector works is the
resolution/unification inference engine internal to Prolog. In this
way, a suggested alternative to a misspelled word is found to be
a theorem of the union of the lexicon with a set of ‘corruption
rules’ like the one above. This is the most direct and effective
way to approach the problem that we know of.

As we mentioned above, the current interest is with typing errors
of the Damerau type. This enables us to make direct
performance comparisons between TALISMAN and other
current products, for most such products emphasize typing
errors in their design. However, the only limitation on the
nature of the errors to be detected is that they be expressible in
first order logic. This, in effect, accommodates all error types
which can be unambiguously expressed.

. . Orpa .

As we reported in an earlier article [33, perhaps the greatest
single difficulty in using Prolog in approximate string matching
is the inefficiency with which it accesses the clause database.
Frequently, the clauses are organized by predicate name and
arity. Occasionally, indexing takes into account first argument
as well. Thus, we suggested that the lexical database be
organized in a length-segmented fashion, with words stored
alphabetically within each segment (compilers typically perform
this automatically when organizing internal databases). In the
worst case, each segment must be searched serially for each
match. In the best case, each subset of the segment with the
desired character in the first position must be searched serially.
In either case, several hundred patterns may be compared prior
to a match. As we noted, this approach is not viable.

At first glance, one might consider representing the words
themselves as predicates of zero a&y. In this case, the entire
lexical database would be completely indexed, and amenable to
sub-linear search procedures. Since the logic of our spelling
correction requires that each word-token be treated as a list
containing characters, a simple re-conversion by means of the
‘name’ predicate would be necessary prior to search. The
problem is that with the exception of the transformation test, the
search targets contain uninstantiated character variables, and a
predicate containing uninstantiated variables is undefined in
Prolog. Thus, the solution must lie elsewhere, if it exists.

Two file access techniques which are available on some
compilers are hashing and B-trees. Since search targets contain
uninstantiated variables, hashing seems unrealistic. For it to
work, one would need hash tables for all character positions,
individually. We felt that greater promise would be offered by
B-trees. Since lexical databases are essentially static in this
application, we might take advantage of the search characteristics
of B-trees while avoiding the update overhead.

B-trees of order m are multiway search trees which satisfy the
following properties:

1. Every node has <rn children,
2. Every node but the root and terminal have 2 rfl21

children,
3. a non-terminal root has at least 2 children,
4. Terminal nodes appear on the same level, and have no

information, and
5. An internal node with k children contains k- 1 key values.

The efficiency of searching B-trees is directly related to their
order. The maximum number of nodes which must be traversed
is K I l+log rm/21((n+1)/2), where n is the number of key
values in the tree. Thus, for a B-tree of order 256 defined over a
100,000 word lexicon, the maximum search length is 4.

The Arity Prolog compiler supports a modified form of B-trees
(condition 4, above, is relaxed to allow up to nine data elements
on leaves), but regrettably restricts the order to three. Despite
this limitation, a minor increase in performance was expected
over the length-segmented list approach. This was not what we
found.

109

In order to test the B-tree approach, we created a text file of 95
misspelled words, corrupted by transposition of two adjacent
characters, insertion of an unwanted character, omission of a
character, and substitution of a wrong character (see Appendix

The errors were distributed according to the ratio
:!20:33:34, respectively, which represents the average of the
distributions of the two error sources reported by Peterson [1 I].
This text file was then ‘corrected by two versions of our Prolog
spelling checker against our 9,734-word test lexicon. The first
version organized the lexical database by word length first, and
then alphabetically. The second version used sixteen B-trees
(one for each word length), each with order 3.
The results were as follows: the source code and database for the
length-segmented database compiled to 59Okb and executed in
34.8 minutes,while the B-tree and program compiled 790kb and
executed in 39.6 minutes, on an IBM PC/AT with a 6 MHZ
clock, 640kb of TPA and a 3.5mb RAM disk for virtual
memory. Thus, it became clear that the overhead associated
with B-tree organization outweighs the minor advantage in
search efficiency. This could be due to any number of factors.
First, it is quite likely that the presence of uninstantiated
variables in keys may undermine the indexing advantage by
forcing a large number of serial searches. This might be
overcome by using multiple indices. However, we felt that the
additional space overhead would have been prohibitive, and
therefore this direction was not explored. Second, the terms
stored in the B-tree were lists of characters rather than atoms or
unit clauses, which may introduce a complicated pointer
structure with corresponding performance degradation. Third,
the increase in the size of the database may cause thrashing due
to a lack of spatial locality. Or, perhaps some combination of
the above becomes pathological in approximate string matching
contexts. Since we do not know how B-trees are handled in the
compiler, there is no way to determine the precise cause of the
performance degradation. For whatever reason, B-trees proved
to be ineffective in lexical organization, at least as far as this
product is concerned.

Having exhausted the lexical organization options within Prolog,
it was decided that we would explore the possibility of
interfacing the Prolog program with a high-level language which
would handle the lexical organization. For this purpose, we
chose Microsoft C, version 4.0. We thought that by judicious
use of filters which would reduce the number of searches per
target, we might increase the efficiency of TALISMAN by an
order of magnitude. The task of developing the interface was
undertaken by one of our associates, and the results are reported
in [13].

The general approach was to use n-grams analysis on the lexicon
to restrict searches to only’ those strings which were likely to be
found, That is, if a transformation on a word target resulted in
word token which contained a n-gram which does not appear in
the lexicon, no search would be conducted to determine whether
it was a legitimate word. In this application we felt that trigrams
would offer the best balance between precision and efficiency
(cf.,[ll PW.
We represented the trigram data from the lexicon by means of
‘Boolean Cubes’. A Boolean Cube is a three dimensional bit
array where each axis corresponds to a position in the trigrams
to be tested. The bit is ‘1’ or ‘0’ according to whether the
corresponding n-gram appears, or fails to appear, anywhere in
the lexicon. Thus, when one of the logical transformations (i.e.,
trmsposition, omission, etc.) of the word target is tested, the
Boolean cube is consulted. If the ‘massaged’ word target is not
inconsistent with the values within the cube, one or more
searches is conducted, else no search results.

Perhaps it is easiest to explain the operation of the n-gram filter
by way of an example. Suppose that the current test is for the
accidental omission of a character within the string cl...ck. The
search will be for instances of Xcl...ck through cl...ckX,
where X is a currently uninstantiated variable. Obviously, were
one to search for all instantiations of X in all positions a great
deal of time would be wasted, for only 15% of all possible
trigrams actually occur in the lexicon. We overcome this
inefficiency by first consulting the Boolean Cube to determine
the instantiations which have any chance of success. One may
think of the uninstantiated variable as designating up to three
vectors in the cube as it changes from position one to three in the
corresponding trigrams.

For testing purposes, we organized the lexicon as length-
segmented lists, with lexical data stored alphabetically within
each segment. Database access was a simple binary search
within the appropriate segments. Our goal of improving the
performance of TALISMAN by an order of magnitude was
realized at least with respect to the sample data discussed above.
The 95word text file (Appendix 1) was processed in under 2
minutes. To place this in perspective, version 1.4 of m Word
required 5 minutes 49 seconds, and version 5.0 of m SDeIler
(using the new Proximity Technology PF474 algorithm
[14][151) took 4 minutes and 11 seconds. Thus even at the early
prototype stage, the performance of TALISMAN was
promising. It is important to mention that the current
implementation TALISMAN uses a considerably smaller
lexicon that either of the two other products -Word and
Office &l& both use lexicons with more that 50,fKKl words).
However, since the number of seeks is constant, irrespective of
database size, and since the accessing is performed in sublinear
time, even a ten-fold increase in the size of the lexicon will only
contribute a 25% decrease in performance. This may eventually
be offset by additional tuning of our trigram filters.

In order to demonstrate the accuracy of TALISMAN, we call
the reader’s attention to the list of alternatives which appear in
the Appendix. In all cases, when an alternative is suggested by
The Word but not by TALISMAN, the missing word was not
in the latter’s dictionary. The converse was not the case. The
entries for ‘XHAIRS’, ‘HTE’, ‘ERBS’ and ‘XEBRA clearly
show the The Word relies upon the correctness of the fust few
characters of the target for entry into the database.
TALISMAN presents no such limitation. It should also be
mentioned that the current, test-version of TALISMAN is
specifically designed with the Damerau conditions in mind so
that its performance may be compared with other products.
Logic-based approaches to spelling correction are easily and
precisely extended to non-Damerau relations, while it isn’t at all
clear how this would be handled in products which define
similarity by similarity measures or metrics (see ref. [3] for
further discussion).

In addition, since TALISMAN directly encodes the definitions
of the spelling corruptions to be considered into the program,
there is precise control over the nature of the alternatives. Listed
below are typical alternative spellings, in the order in which they
are suggested, for our word list provided by Office Sneller:

1. massachusets (massachusetts,masochists,masochistic,
musicologist,musicologists,

2. oxegen

3. hezitate

4. xebra

misa.llocation,mastications, methodistic]

(oxygen,hexagon,exiting,exuding,
exigent,exogamy,hexagons,oxygenic)

(hesitate,acetate,esthetic,aesthetic,
atheletic,elucidate,housecoat,hesitated)
(zebra,subway,sabre,sober,siberia,
super,soberly).

110

A brief reading will show that the approximation metrics in use
are far too broad. Specifically, it is hard to imagine a possible
world in which ‘oxegen’ is a more likely misspelling of
‘exciting’ than ‘oxygenic’ is. Similarly, ‘massachusets’ is not
likely to be a misspelling of ‘misallocation’ or ‘musicologist’;
nor is ‘hezitate’ a likely misspelling of ‘housecoat’, nor ‘xebra’
of ‘subway’ or ‘Siberia’. This indicates the inherent weaknesses
of using approximations. In the above cases, at least, the first
alternative is a reasonable one. However, the latter alternatives
should make us suspicious that the approximation technique is a
bit crude. Our suspicion is confirmed for the following two
words:

S.xhairs [theirs,Thurs.,sailers,sailors,thirst,saris)

6.nieghbor (newsboy,newsboys)

In these cases, the breadth of the metric is not the only problem:
the metric simply doesn’t work at all. The spelling corruptions
are among the most common of all errors: basic Damerau typing
errors resulting from the substitution of a character by an
adjacent one on the keyboard and a simple transposition, and yet
they go undetected. Similar problems occur with Turbo
Lightning: ‘xhairs’ suggests ‘x-axis’, ‘x-rays’ and ‘Xmas’,
while ‘sychological’ generates the alternatives ‘schismatically’,
‘scholastic’, ‘schoolmarm’, ‘schoolmistress’, ‘schoolmate’ and
‘schoolteachers’, none of which are orthographically close to the
corrupted target. The main problem of approximation
techniques, that they must be continually ‘tuned and are never
exactly ‘right’, is entirely avoided by our approach.

TALISMAN is currently designed for the IBM/PC family of
microcomputers, running under PC-DOS 2.X or above, which
have at least 5 12kb or primary. The operational characteristics
are as follows.

The main screen is partitioned into eight windows which contain
the status line, the target window which presents the purported
misspelling, the context window which offers the context for the
current token of the target which is taken from the document, the
alternatives window with candidates for the intended words, the
help window and three windows for location pointers. The
functional description is easiest to understand in the context of
Figure 1.

The status line contains four sub-windows for toggle status.
SCOPE refers to the extent to which any correction of the target
will affect occurrences (or tokens) of the target within the
document. The options are ALL and ONE. Since there are 2
occurrences of ‘AETS’ in the document, a correction will affect
both in our illustration.

DICT:OFF indicated that the dictionary will only be consulted
upon request (<SHIFT>-<F2>). The alternative is to have
alternatives automatically generated for all targets.

The UPDATE toggle determines whether the contents of the
target window will be inserted into the user’s dictionary.
INSERT has the same effect as in a word processor, allowing
the user to edit the target (e.g., in the case of an accidental
omission of a character).

The three location pointers relate the screen display to the
electronic document. The target pointer tells us that there were
34 putative misspellings found, of which ‘AETS’ is number 1.
The context pointer indicates that this is the first of two
occurrences of this token. The alternatives pointer shows
‘NETS’ to be the fifth of nine alternatives suggested.

<F 1 >=-S=SCOPE I
<FZ>=-D=DICTIONARY
<FB>=^U=UPDRTE DICT
<INS>=INSERT
=DELETE TARGET

mllm
<SH><F2>=-L=LOOK UP <ESC>=EXIT w/o SAVING
<M>=‘R=ALTERNRTE <F lO>=^E=EX I T w/ SR’JE
<FS>=-R=RESTORE
<F6>=-T-THESAURUS
<F7>=-O=OPTIONS

<CTL>+-> =CONTEiT WINDOU
<RI-T>+ -’ =ALTERNAT I UES ”
<CR>=SELECT AND CHANGE

FIGURE 1

111

.
Conclustoa

We have described in general terms the basic operation of
TALISMAN, and contrasted it with more conventional
approaches. A basic understanding of both the nature of the
spelling correction system and of spelling errors illustrates the
effectiveness of this approach. However, the efficiency of the
approach remained in doubt until recently. We are now able to
forecast, with considerable confidence, that the logic-based
system will provide at least the level of performance enjoyed by
conventional approaches, while at the same time affording a far
more accurate solution to the problem.

REFERENCES
[11 Angel& R., G. Freund and P. Willett, “Automatic S@ling
Correction using a Trigram Similarity Measure”, hrformattou
Processine and Management, Vol 19. pp. 255-261 (1983).
[2] Berghel, H., “Extending the Capabilities of Word Pmcemssing
Software through Horn Clause Lexical Databases”, Pmceed es of &
1986 National Comuutine Conference. AFIPS Press, Reston, pp. 25 l-
257 (1986).
[3] Berghel, H., “A Logical Framework for the Correction of
Spelling Etmrs in Electronic Documents”, Information Pmcessin~
Mamen?, Vol. 23, No. 5, pp. 477494 (1987).
[4] n Boyer R. and J. Moore, “A Fast String searching Algorithm”,
Communications of the ACM, Vol. 20. pp. 762-772 (1977).
151 Damerau. F.. “A Techniaue for Comwter Detection and
C&rection of SpelIing Errors”, Communications of the ACM, Vol. 7,
pp. 171-176 (164).
[6] Durham, I., D. Lamb and ; Saxe, “Spelling Comtion in Use
Interfaces”, Communications o the ACM, Vol. 26, pp. 764-773
(1983).
[A Knuth, D., J. Morris and V. Pratt, “Fast Pattern Matching in
Strings”. SIAM JoumaIon Cornouting, Vol. 6. pp. 323-350 (1977).
[81 Kucefa. H. and. W. Francis, p
BAmencan Brown University Press. Providence (1%7):

pelling Correction in Systems Programs”,
the ACM. Vol. 13, pp. 90-94 (1970).

[W Peterson, J., “Computer Programs for Detecting and
Correcting Spelling Errors”, Communications, Vol. 23,
pp. 676-687 (1980).
[1 I] Pieterson, J., “A Note on Undetected Typing Errors”,
-, Vol. 29, pp. 633-637 (1986).
1121 Pollock. J. and A. Zamora. “Automatic Soelline Correction in
Scientific and Scholarly Text”, ~ofthe~(X Vol. 27.
pp, 358-368 (1984).
ii31 Rankin, R. “Increasing the Efficiency of Prolog Lexical
Databases with N-Gram Boolean Cubes”, Technical Report # TR-87-
14, Department of Computer Science University of Arkansas (1987).
1141 Rosenthal, S., “The PF474”. &t& pp. 247-256 (November,
1984).
1151 Taylor, D., “Wordz that Almost Match”, &nmuter Lanw,
pp. 47-59. (November, 1986).

1171 Shaffkr. L. and J. Hardwick. “Typing Performance as a
Function of Text”, Quarterly Jo-, Vol.
20, pp. 360-369 (1968).
U81 Zamora, E., J. Pollock, and A. Zamora,.“The Use of Trigram
Analysis for Spelling Error Detection”, lnformatlon
Management. Vol. 17, pp. 305-316 (1981).

APPENDIX

MissDelling8 &em&es (TALISMAN)
Rekon ReL!kon

Enjoyible
Diaater

Absolutly Absolutely
Flameing Flaming
Drillk Dribble
Estimats EstimateEstimates
Absense Absence
Responsabiity Responsibility
Carpentur Carpenter
VaFetU cateful
aY aY
J=pP Jeep
Poum Plum,Poem,Pour
Xhairs Hair&Chairs
m EatJ3cAAct
No&em Northern
=ng BeingEbbing
Mmz Minimg

Notsence
Pited

Nonsense
Fitted,Fated,Fimd,Fixed

PO&toe
EmpIoied
SkillId
Herold
Jelous
ShOiUE
Gutso
Prarie
Mardhes
Fmgtent
s ychological
Plundged
Evaseion
Pmvidance
h4lloDs *

Continent
Dn%nwd,DnwJ.
DIwm.Dreams.Drealny
EnjoyabIe
Dictate,Dictator

Potato
Eanpoyed
SkiIlfUl
Herald
Jealous
ShareShore
GUStO
Prairie
Marshes
Fragrant
Psychological
Plunged
Evasion
Providence
Millions

matives (‘THE WORD)
Reckal
Continent
Dread,DlEanLDreanKd,
Dreams,DPeamtwDwny
Enjoyable
Dictate,Diaated.Dictate$,
Dictator
Absolutely
Flaming
DribbIeDdbIet
EstimateEstimates
Aik?eXe
Responsibility
Catpenter
no similar word found
Giled,Giler,Gily
Jeep
Plum,Poem,PourPout
no similar word found
Is?
Northern
Ebbiig,Eying
MiniJ$4hling

Nonsense
Fated,Feted;Filed,Fiied
Fired,Fisted,Fitted.Fixed
Potatopotatoes
Employed
SkiIIfUl
Harold.Herald
Jealous
Share,Shore
Gusto,Guts
Prairie
MatchesMarshes
Fragment+Fragrant
no similar word found
Plunged
Evasion
Providence
MiIlions

Hte
Absorbe

The,Hate.He,Ate,Hoe,Hue Hate,He,Hie,Hoe,Hue
Absorbed,Absotb
Absorb.Absorbed.Absorbs

onod
Eateable
Basicalv

Gl&
Dyiing
Cheecko
Pracdse
Triped

d

Massachusets
Abundence
Fixeable
Hczitak
Godcss
Pivit
Mow

Diagmmni
crtls
Pilamill

Honored
JZatable
Basically ’
oxygen
Gluiest
Dying
checked
practice
Striped,Tripped,Tried,
Tripod
Massachusetts
AblllXlanCe
Fixable
Hesitate
Goddess
Pivot
Mousc,Moss

DiagramDiagrams
Hcrbs,Verbs
Filament

no similar word found
EatabIe
Basically
~YIP
no similar word found

aed
Praclice
Ttied,Tripe,Tripled,
TQod,Ttipp
Massachusetts
AblltKianCC
Furable
Hesitate
Goddess,Godless
Pivot
Mobs,Modus,Moos,
Mops,Moss,Mouse,
Mousy
DiagramDiagrams
Ebbs,Eras,Eros,Em
wlament

112

Skelaton

Reefe
NeNey
Ofen

Nieghbor
E4xo
Inword
Wenesday
Eatemal
Gipsy
Ma&xl

Nomanal
Overwehn
Rustleing
Blueish
HlmUd
Emil
Kerasene
Gymnasium
Hony

Basaat
Hemsm
Xebra
Eah
Weazel
Mernit
Libary
Aias

Alabi
IXXiSy
Fotths
Trouzcrs
AXtiC

Auyes

Skeleton
Labor,Abhor
Reef
NeNe,Nerves.Nervy
Often.Open.Oven

Neighbor

InWard

Wednesday
Eternal
GYPSY
Manied.Varied,Marked

Nominal
Overwhelm
Rustling
Bluish
Hundred
Endl
Kerosene
Gymnasium
Homy,Honey,Bony,Pony,
Holy
BaZUr
Heroism
zebra
Each&u
Weasel
EmitRemit
Library
Eats,Gets.Jets,Lets,Nets,
Pets.Sets,Acts,Arts . .

&
Fourths,Forth,Forts
Trousers
AlCtiC

Allies

Skeleton
Abort.Abhor,Arbor
Reef,Reefs,Reeve
Nerve.Nerves,NeNy
Often,Omen.Opcn,Oren,
Oven.Owen,Oxen
Neighbor

IllWard
Wednesday
Etemal~temal
GYPSY
Marie,Marked&farmd.
Manied
Nominal
Overwhelm
Rustling
Bluefish,Bluish
Hundred
Enloll
Kerosene
GjJllUlasiUlll
Holy,Hone.Honey,Hong.
Honk,Homey,Hoy
Bazaar
Heroism
no similar word found
Each,Ear,Eat,Eh
Weasel
h4ait
Library
Acts.Ants.Arts

. .
&
Forth,Forts
Tmuper,Trouser
AElk

AlleysAllies

113

