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Abstract 

We discuss the model-theoretic characterization of the 
components of logic-based expert systems which employ 
pure meta-level inference regimes. The roles of the basic 
components of such systems in the underlying fust order 
theories are specified. This includes the domain specific 
rules, meta-level inference engine, and intrinsic interpreter. 
Fragments of an actual expert system are used to motivate 
and illustrate the analysis. 

Introduction 

Although expert systems have been widely implemented 
using logic-based approaches, not enough has been done to 
relate the systems to the logical theories which they 
instance. A deeper characterization of such systems is 
needed in terms of their underlying first order theories. We 
undertake to provide such a characterization by examining 
fragments of a pure meta-level expert system and 
describing its components in model-theoretic terms. 
Interesting features of the underlying formal structure of 
such expert systems are made explicit by this type of 
analysis - for instance, the existence of multiple 
overlapping theories. 

Pure meta-level inference systems are the focus of the 
analysis and are described in [51. Meta-level systems are 
those in which there is a clear separation between control 
knowledge (meta-knowledge) and domain knowledge 
(object-knowledge). The utility of this separation and the 
implementation of it in logic-based systems has been 
explored in many places [2,4,91. Of particular interest are 
the pure meta-level inference systems in which the locus of 
action [5,12] is primarily at the meta-level. Harmelen 
gives the following analysis of such systems. 

The behavior of the object-level is fully 
specified at the meta-level. Using this 
description of the object-level, the meta-level 
can completely simulate the object-level 
inference process. This means that there is 
no longer a need for an explicit object-level 
interpreter. As a result, the object-level 
interpreter is no longer present in the system, 
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and its behavior is completely simulated by 
the execution of its specification at the meta- 
level [5 ,  p. 231. 

This analysis is procedurally oriented - as evidenced by the 
discussion of the meta and object-level interpreters. A 
different and deeper characterization of pure meta-level 
architectures is possible with a more declaratively oriented 
analysis. We seek to provide such an analysis in this paper. 

An informal description of a pure meta-level expert system 
that was developed by the authors can be found in [10,11]. 
Our declarative (model-theoretic) analysis is based on it. 
The system is called RAF' (for Relocation Allowance 
Planner). It's purpose is to determine travel allowances for 
Govemment employees who are transferred to a new post 
of duty. The three components of the system that are 
relevant to the current discussion are: the problem domain 
rules, the inference engine clauses, and the built-in 
inferencing mechanism. Since the system is written in 
Prolog the three components should be viewed in that 
context. That is, the problem domain rules are English-like 
Prolog constructs, the inference engine is a set of Prolog 
clauses, and the built-in inferencing mechanism is the 
resolution/refutation facility intrinsic to Prolog. 

First Order Theories 

First order theories are discussed in [3,7,8]. The 
components of such theories are a first order language, a 
set of aa'oms, and a set of inference rules. Since RAF' is 
written in Prolog, we adopt as our language the Horn clause 
subset of first order logic. See [3,7]. The formal 
specification of the well-formed formulas of first order 
logic is as follows: 

A first order logic term is defined as follows: 
1) A variable is a term. 
2) An object constant is a term. 
3) If 0 is an n-ary function constant and Tl,...,Tn are terms, 

then @(TI, ..., T ) is a term (called a functional 
expression in ($1). 

A first order logic wff is defined as follows: 
1 )  If Y is an n-ary relation constant and TI, ..., T~ are terms, 

then " ( T I ,  ..., T,J is a wff (called an atom or atomic 
sentence). 

2) If P and Q are wffs, then so are (-P), (P A Q), (P  v Q), 
(P + Q) or equivalently (Q t P), and (P t) Q). 

3) If P is a wff and x is an apparent variable, then (VxP) 
and @xP) are wffs. 



We wish however to restrict our language to Horn clauses, 
i.e., clauses with at most one positive literal. Therefore, the 
wffs of our language are confined to those first order wffs 
which can be transformed into an expression (or a set of 
such expressions) of the form 

P1v ... v P m v - Q l v  ... v 4 & , w h e r e m I l , n 2 0  

by some complete and consistent set of rules of inference 
[6]. We assume the usual model-theoretic semantics for 
fitst order logic expressions. 

The axioms and rules of inference for our theories will be 
components of the expert system being analyzed. We 
include the axioms necessary to have theories with 
equality. 

Expert Systems 

As stated in the introduction, there are three distinct but 
interrelated components of RAP that must be accounted for 
in any analysis (declarative or procedural): a rule base in 
which the domain specific information is encoded (we refer 
to these as the Level 1 (Ll) clauses), a set of programmer 
written inference engine clauses for controlling the 
chaining process and capturing the trace (the L2 clauses), 
and an inference engine native to the logic programming 
system being used (the L3 clauses). We need to provide a 
description of each of these components. 

The L1 clauses encode the expert knowledge. In RAP, this 
knowledge is represented by a set of rules whose syntax is 
described in terms of a hierarchy of expressions as follows: 

Let the vocabulary of an arithmetic expression be 
1. a fmite set of real-valued variables, V= (v 1 . ~ 2  ,..., vk) , 
2. the arithmetic operators **’, ‘1, ’+’, *-’, and 
3. the punctuation symbols ’(* and *)’. 
We define arithmetic expressions inductively as follows: 
1. Real-valued variables and real numbers are arithmetic 
expressions. 
2. If A and B are arithmetic expressions, then so are (A * 

If we let the vocabulary of a relational expression be 
1. a fmite set of real-valued variables, V= (v  1 ,v2 ,..., vk) , 
and 
2. the set of relational operators, O= (=,c,,5,2) , 
then a relational expression is an expression of the form vi  
o v’  or Vi  o p, where lSS, Vi,Vj E V, o E 0, and p is a 
r d  number. 

B), (A / B), (A + B), and (A - B). 

The vocabulary of a sentence evaluation consists of 
1. a finite set of sentenc? yariables, S=(sl,s2 ...., sk) , 
2. the identity operator = , and 
3. the set of sentence values, E=(yes,no). 
The resulting sentence evaluations are expressions of the 
form Si = e, 14’Ik, where e E E. 

Let the vocabulary of a logical expression be 
1. the vocabularies of relational expressions and sentence 
evaluations, 
2. the set of logical operators, O= (and,or) , and 
3. the punctuation symbols *(’ and *)’. 
A logical expression is defined inductively as follows 
1. Relational expressions and sentence evaluations are 
logical expressions. 

2. If A and B are logical expressions, then so are (A and B) 
and (A or B). 

We can now define assignment and conditional rules. The 
vocabulary of an assignment rule is composed of 
1. the vocabulary of arithmetic,expressions, 
2. the assignment operator *= , 
3. a finite set of sentence variables, S=( s 1.~2, ..., sk ) ,  and 
4. the set of sentence values, E= ( yes,no). 
There are two forms of the assignment rule. 
1. If A is a real-valued variable and B is an arithmetic 
expression, then A = B is an assignment rule. 
2. Any expression of the form S i  = e, llilk, where e E E 
is an assignment rule. 

By letting the vocabulary of a conditional rule be 
1. the vocabularies of logical expressions and assignment 
rules plus 
2. the conditional operator *if then’, 
we can define a conditional rule as follows: 
If A is a logical expression and B is an assignment rule, 
then if A then B is a conditional rule. 

The following rules are instances of the rule schemata. The 
first is a conditional rule and the second is a typical 
assignment rule. 

if 
(($you$ will $sign a 12 month service 
agreement$ = yes 

($you$ are $a Department of Defense overseas 
dependents school system teacher as determined 
under Chapter 25 of title 20 of the United 
States Code$ = yes and 
$you$ will $sign a service agreement for 1 
school year$ = yes)) 

($you$ are $separated for reasons beyond your 
control$ = yes and 
$you$ will $transfer with approval of the 
concerned agency$ = yes)) 

$you$ meet $the service agreement requirements 
in 2-1.5a(l) (a-b)$ == yes. 

$your subsistence/transportation allowance$ == 
((($your subsistence allowance per day$ + 
$the subsistence allowance for your immediate 
family per day$) * 
$the number of days required to complete the 
move$) t 
$your transportation allowance for 
relocating$) . 

o r  

or 

then 

The specification of the syntax of the L1 clauses makes 
explicit the fact that these clauses contain variables which 
range over a particular universe of discourse. Specifically, 
the variables in the L1 clauses range over the objects 
(events, costs, times, places, people, statements, etc.) eat  
are relevant to the particular problem domam bemg 
addressed. 

The L2 clauses make up the programmer defined expert 
system inference engine. Those clauses in RAP’S inference 
engine that are necessary to the current analysis are 
discussed. The complete engine is described in [lll. 
Interpreted procedurally, the L2 clauses direct the chaining 
process and construct traces of the paths followed. (The 
sample system is backward-chaining; however, a forward- 
chaining engine has the same model-theoretic 
interpretation.) Informally, the inference engine clauses 
are of the form 



Overlapping Theories 
pursue (Goal, Why, How) :- subgoals 

where Goal is either a complex goal that is to be parsed or 
a simple goal for which a matching rule is sought, why is a 
list that contains the path from the top-level goal to the 
current goal (the ’why-trace’), and HOW is a tree structure 
of all the paths from the top-level goal to all lower-level 
goals that have been satisfied (the ’how-trace’). 

The following L2 clause parses the complex goals which 
result from ’chaining in’ an L1 clause with conjoined 
antecedent conditions. 

pursue ( (Goall and Goal2) ,Why,Reason) :- !, 

( !,pursue (GoalZ,Why,Reason2), 

pursue (Goall.Why.Reason1) , !, 
ifthenelse (positive (Reasonl) , 

ifthenelse (positive (Reason2), 
Reason = (Reasonl and Reason2), 
Reason = ReasonZ)). 

Reason = Reasonl) . 
The important point is what the variables Goall and 
Goa12 in the head of this clause range over. Obviously, it 
is not over the same set of objects as was the case with the 
L1 variables. Instead, Goall and Goa12 range over 
portions of L1 clauses. They each range over one of some 
number of conjoined antecedent conditions of an IF..THEN 
rule. Thus, they are metavariables with respect to the 
variables of the L1 clauses. The next L2 clause further 
illustrates the meta-level characteristic of the L2 clauses. 

pursue(Goa1, Why, Goal eq Value is Truthvalue 
because Reason) :- 

recorded(rule(if Condition then Goal = 

[ ! (pursue(Condition, [$To determine a value for$ 

truth-value (Reasonl, Truthvalue) ! I ,  
Truthvalue == true, !, 
pursue(Expression, [$To determine a value for$ + 

evaluate(Expression,Value,$To determine a value 

Reason = ((Goal eq Expression is true because 

recordz (wasderived(Goa1,Value) ,-) . 

Expression) ,-) ,  

+ Goal IWhyl, Reasonl) ; ( !, fail) ) , 

Goal I Why], Reason2), ! , 

for$ + Goal), !, 
Reasonl) and Reason2) , !, 

In the first subgoal of the clause, the rule base is searched 
for an IF..THEN rule whose consequent has a left operand 
that will unify with the current goal. The variables 
Condition, Goal, and Expression all range over 
subcomponents of the L1 clause that is retrieved. As with 
the previous L2 clause, the structure of the target object 
level clause is made explicit. As a result, the search for the 
L1 clause can be thought of as ’content-directed’ [ 11. 

The L3 clauses are the last expert system component that 
requires analysis. However, there is no need to do so here. 
The L3 clauses make up the inference engine intrinsic to 
the logic programming system being used - in this case, the 
Prolog engine. As such, they have been carefully and fully 
analyzed both declaratively and procedurally. See 
especially [5]. However, we should note their role in RAP. 
That role is analogous to the role played by the L2 clauses 
with respect to the L1 clauses. Obviously, the built-in 
(intrinsic) engine has as its object the L2 clauses. As a 
result, the variables in the L3 clauses range over L2 clauses 
and subcomponents. If we think of the L2 variables as 
metavariables. then the L3 variables should be thought of 
as metametavariables. 

Obviously, the variables in the three sets of clauses do not 
all range over the same universe of discourse. The 
variables in the L1 clauses range over the entities that are 
part of a particular problem domain, the L2 variables range 
over L1 clauses and subcomponents, and the L3 variables 
range over L2 clauses and subcomponents. How are we to 
interpret these facts within the standard model-theoretic 
framework? 

We begin by observing that a theory (Tl) can be 
constructed of the L1 and L2 clauses and the UD that the 
L1 variables range over (UDl). The universe of discourse 
for T1 consists of the entities listed earlier that are a part of 
the problem domain being addressed by the expert system. 
In this case, the L l  clauses form the axioms of T1. Since 
the L2 clauses are defined over the L1 clauses, the L2 
clauses can be thought of as inference rules for T1. But we 
also have the components for a second theory (T2). The L1 
clauses and subcomponents can be thought of as elements 
of a second UD 0 2 ) .  The L2 clauses become the axioms 
for T2 since the L2 variables range over UD2. Since the 
variables of the L3 clauses range over L2 clauses and 
subcomponents, the L3 clauses can be interpreted as the 
inference rules of T2. 

Neither T1 nor T2 alone is sufficient for a model-theoretic 
interpretation of an expert system, since each theory in 
isolation would leave components unaccounted for. In fact, 
no single theory is adequate to the task. Consequently, we 
must assume that a model-theoretic analysis of expert 
systems requires at least a dual theory analysis. But such 
an analysis must go further and make explicit the 
relationship between the component theories. 

We see immediately that T1 and T2 ’overlap’ in that they 
share a component. The L2 clauses are present in each 
theory. However, the L2 clauses are interpreted differently 
in each theory. In T1 the L2 clauses function as inference 
rules since the clauses’ variables range over L1 clauses and 
subcomponents. In T2 they function as axioms since the 
variables range over the theories’ UD. Thus, the L2 
clauses serve a dual role. 

As a result, the L2 clauses relate two distinct parallel 
deductive processes. When a consultation with an expert 
system is in progress, two ’proofs’ are being carried out 
simultaneously - one within T1 and another within T2. 
Within T1 the L2 clauses direct inferences among the L1 
clauses (and resulting theorems), and within T2 the L3 
clauses direct inferences among the L2 clauses (and 
theorems). 

There are several benefits to a purely declarative model- 
theoretic characterization of the components of an expert 
system. First, it satisfies the need to make the declarative 
interpretation of these systems explicit. Second, a 
declarative analysis serves to bridge the gap between our 
relatively high-level conceptualization of expert systems 
and their more fundamental structure. Third, it provides an 
informative explanation of Harmelen’s observation that the 
object-level interpreter is simulated at the meta-level. It 
functions as a set of inference rules at the object-level (and 
thus exists in the object-theory), but it functions as a set of 
axioms at the meta-level (so that it is an integral component 
of the meta-theory). Finally, a declarative analysis clearly 
shows the relevance of discussions of completeness and 



strictness (see [3). Expert systems have as fundamental 
components inference rules, which are the true bearers of 
these sorts of meta-theoretical properties. 

Conclusion 

We have attempted a declaratively oriented analysis of pure 
meta-level expert systems in terms of the more 
fundamental components of logical theories. This analysis 
indicates that an expert system can be usefully 
characterized as a set of overlapping logical theories. It is 
hoped that the characterization is informative with respect 
to the basic nature and functioning of such systems. 
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