
Expert Systems as Overlapping Logical Theories

David Roach, Hal Berghel
University of Arkansas

National Center for Toxicological Research

Abstract

We discuss the model-theoretic characterization of the
components of logic-based expert systems which employ
pure meta-level inference regimes. The roles of the basic
components of such systems in the underlying fust order
theories are specified. This includes the domain specific
rules, meta-level inference engine, and intrinsic interpreter.
Fragments of an actual expert system are used to motivate
and illustrate the analysis.

Introduction

Although expert systems have been widely implemented
using logic-based approaches, not enough has been done to
relate the systems to the logical theories which they
instance. A deeper characterization of such systems is
needed in terms of their underlying first order theories. We
undertake to provide such a characterization by examining
fragments of a pure meta-level expert system and
describing its components in model-theoretic terms.
Interesting features of the underlying formal structure of
such expert systems are made explicit by this type of
analysis - for instance, the existence of multiple
overlapping theories.

Pure meta-level inference systems are the focus of the
analysis and are described in [51. Meta-level systems are
those in which there is a clear separation between control
knowledge (meta-knowledge) and domain knowledge
(object-knowledge). The utility of this separation and the
implementation of it in logic-based systems has been
explored in many places [2,4,91. Of particular interest are
the pure meta-level inference systems in which the locus of
action [5,12] is primarily at the meta-level. Harmelen
gives the following analysis of such systems.

The behavior of the object-level is fully
specified at the meta-level. Using this
description of the object-level, the meta-level
can completely simulate the object-level
inference process. This means that there is
no longer a need for an explicit object-level
interpreter. As a result, the object-level
interpreter is no longer present in the system,

TH0307-9/90/0000/0164$01 .OO 0 1990 IEEE

and its behavior is completely simulated by
the execution of its specification at the meta-
level [5 , p. 231.

This analysis is procedurally oriented - as evidenced by the
discussion of the meta and object-level interpreters. A
different and deeper characterization of pure meta-level
architectures is possible with a more declaratively oriented
analysis. We seek to provide such an analysis in this paper.

An informal description of a pure meta-level expert system
that was developed by the authors can be found in [10,11].
Our declarative (model-theoretic) analysis is based on it.
The system is called RAF' (for Relocation Allowance
Planner). It's purpose is to determine travel allowances for
Govemment employees who are transferred to a new post
of duty. The three components of the system that are
relevant to the current discussion are: the problem domain
rules, the inference engine clauses, and the built-in
inferencing mechanism. Since the system is written in
Prolog the three components should be viewed in that
context. That is, the problem domain rules are English-like
Prolog constructs, the inference engine is a set of Prolog
clauses, and the built-in inferencing mechanism is the
resolution/refutation facility intrinsic to Prolog.

First Order Theories

First order theories are discussed in [3,7,8]. The
components of such theories are a first order language, a
set of aa'oms, and a set of inference rules. Since RAF' is
written in Prolog, we adopt as our language the Horn clause
subset of first order logic. See [3,7]. The formal
specification of the well-formed formulas of first order
logic is as follows:

A first order logic term is defined as follows:
1) A variable is a term.
2) An object constant is a term.
3) If 0 is an n-ary function constant and Tl,...,Tn are terms,

then @(TI, ..., T) is a term (called a functional
expression in ($1).

A first order logic wff is defined as follows:
1) If Y is an n-ary relation constant and TI, ..., T~ are terms,

then " (T I , ..., T,J is a wff (called an atom or atomic
sentence).

2) If P and Q are wffs, then so are (-P), (P A Q), (P v Q),
(P + Q) or equivalently (Q t P), and (P t) Q).

3) If P is a wff and x is an apparent variable, then (VxP)
and @xP) are wffs.

We wish however to restrict our language to Horn clauses,
i.e., clauses with at most one positive literal. Therefore, the
wffs of our language are confined to those first order wffs
which can be transformed into an expression (or a set of
such expressions) of the form

P1v ... v P m v - Q l v ... v 4 & , w h e r e m I l , n 2 0

by some complete and consistent set of rules of inference
[6]. We assume the usual model-theoretic semantics for
fitst order logic expressions.

The axioms and rules of inference for our theories will be
components of the expert system being analyzed. We
include the axioms necessary to have theories with
equality.

Expert Systems

As stated in the introduction, there are three distinct but
interrelated components of RAP that must be accounted for
in any analysis (declarative or procedural): a rule base in
which the domain specific information is encoded (we refer
to these as the Level 1 (Ll) clauses), a set of programmer
written inference engine clauses for controlling the
chaining process and capturing the trace (the L2 clauses),
and an inference engine native to the logic programming
system being used (the L3 clauses). We need to provide a
description of each of these components.

The L1 clauses encode the expert knowledge. In RAP, this
knowledge is represented by a set of rules whose syntax is
described in terms of a hierarchy of expressions as follows:

Let the vocabulary of an arithmetic expression be
1. a fmite set of real-valued variables, V= (v 1 . ~ 2 ,..., vk) ,
2. the arithmetic operators **’, ‘1, ’+’, *-’, and
3. the punctuation symbols ’(* and *)’.
We define arithmetic expressions inductively as follows:
1. Real-valued variables and real numbers are arithmetic
expressions.
2. If A and B are arithmetic expressions, then so are (A *

If we let the vocabulary of a relational expression be
1. a fmite set of real-valued variables, V= (v 1 ,v2 ,..., vk) ,
and
2. the set of relational operators, O= (=,c,,5,2) ,
then a relational expression is an expression of the form vi
o v’ or Vi o p, where lSS, Vi,Vj E V, o E 0, and p is a
r d number.

B), (A / B), (A + B), and (A - B).

The vocabulary of a sentence evaluation consists of
1. a finite set of sentenc? yariables, S=(sl,s2, sk) ,
2. the identity operator = , and
3. the set of sentence values, E=(yes,no).
The resulting sentence evaluations are expressions of the
form Si = e, 14’Ik, where e E E.

Let the vocabulary of a logical expression be
1. the vocabularies of relational expressions and sentence
evaluations,
2. the set of logical operators, O= (and,or) , and
3. the punctuation symbols *(’ and *)’.
A logical expression is defined inductively as follows
1. Relational expressions and sentence evaluations are
logical expressions.

2. If A and B are logical expressions, then so are (A and B)
and (A or B).

We can now define assignment and conditional rules. The
vocabulary of an assignment rule is composed of
1. the vocabulary of arithmetic,expressions,
2. the assignment operator *= ,
3. a finite set of sentence variables, S=(s 1.~2, ..., sk) , and
4. the set of sentence values, E= (yes,no).
There are two forms of the assignment rule.
1. If A is a real-valued variable and B is an arithmetic
expression, then A = B is an assignment rule.
2. Any expression of the form S i = e, llilk, where e E E
is an assignment rule.

By letting the vocabulary of a conditional rule be
1. the vocabularies of logical expressions and assignment
rules plus
2. the conditional operator *if then’,
we can define a conditional rule as follows:
If A is a logical expression and B is an assignment rule,
then if A then B is a conditional rule.

The following rules are instances of the rule schemata. The
first is a conditional rule and the second is a typical
assignment rule.

if
((you will $sign a 12 month service
agreement$ = yes

(you are $a Department of Defense overseas
dependents school system teacher as determined
under Chapter 25 of title 20 of the United
States Code$ = yes and
you will $sign a service agreement for 1
school year$ = yes))

(you are $separated for reasons beyond your
control$ = yes and
you will $transfer with approval of the
concerned agency$ = yes))

you meet $the service agreement requirements
in 2-1.5a(l) (a-b)$ == yes.

$your subsistence/transportation allowance$ ==
((($your subsistence allowance per day$ +
$the subsistence allowance for your immediate
family per day$) *
$the number of days required to complete the
move$) t
$your transportation allowance for
relocating$) .

o r

or

then

The specification of the syntax of the L1 clauses makes
explicit the fact that these clauses contain variables which
range over a particular universe of discourse. Specifically,
the variables in the L1 clauses range over the objects
(events, costs, times, places, people, statements, etc.) eat
are relevant to the particular problem domam bemg
addressed.

The L2 clauses make up the programmer defined expert
system inference engine. Those clauses in RAP’S inference
engine that are necessary to the current analysis are
discussed. The complete engine is described in [lll.
Interpreted procedurally, the L2 clauses direct the chaining
process and construct traces of the paths followed. (The
sample system is backward-chaining; however, a forward-
chaining engine has the same model-theoretic
interpretation.) Informally, the inference engine clauses
are of the form

Overlapping Theories
pursue (Goal, Why, How) :- subgoals

where Goal is either a complex goal that is to be parsed or
a simple goal for which a matching rule is sought, why is a
list that contains the path from the top-level goal to the
current goal (the ’why-trace’), and HOW is a tree structure
of all the paths from the top-level goal to all lower-level
goals that have been satisfied (the ’how-trace’).

The following L2 clause parses the complex goals which
result from ’chaining in’ an L1 clause with conjoined
antecedent conditions.

pursue ((Goall and Goal2) ,Why,Reason) :- !,

(!,pursue (GoalZ,Why,Reason2),

pursue (Goall.Why.Reason1) , !,
ifthenelse (positive (Reasonl) ,

ifthenelse (positive (Reason2),
Reason = (Reasonl and Reason2),
Reason = ReasonZ)).

Reason = Reasonl) .
The important point is what the variables Goall and
Goa12 in the head of this clause range over. Obviously, it
is not over the same set of objects as was the case with the
L1 variables. Instead, Goall and Goa12 range over
portions of L1 clauses. They each range over one of some
number of conjoined antecedent conditions of an IF..THEN
rule. Thus, they are metavariables with respect to the
variables of the L1 clauses. The next L2 clause further
illustrates the meta-level characteristic of the L2 clauses.

pursue(Goa1, Why, Goal eq Value is Truthvalue
because Reason) :-

recorded(rule(if Condition then Goal =

[! (pursue(Condition, [$To determine a value for$

truth-value (Reasonl, Truthvalue) ! I ,
Truthvalue == true, !,
pursue(Expression, [$To determine a value for$ +

evaluate(Expression,Value,$To determine a value

Reason = ((Goal eq Expression is true because

recordz (wasderived(Goa1,Value) ,-) .

Expression) ,-) ,

+ Goal IWhyl, Reasonl) ; (!, fail)) ,

Goal I Why], Reason2), ! ,

for$ + Goal), !,
Reasonl) and Reason2) , !,

In the first subgoal of the clause, the rule base is searched
for an IF..THEN rule whose consequent has a left operand
that will unify with the current goal. The variables
Condition, Goal, and Expression all range over
subcomponents of the L1 clause that is retrieved. As with
the previous L2 clause, the structure of the target object
level clause is made explicit. As a result, the search for the
L1 clause can be thought of as ’content-directed’ [11.

The L3 clauses are the last expert system component that
requires analysis. However, there is no need to do so here.
The L3 clauses make up the inference engine intrinsic to
the logic programming system being used - in this case, the
Prolog engine. As such, they have been carefully and fully
analyzed both declaratively and procedurally. See
especially [5]. However, we should note their role in RAP.
That role is analogous to the role played by the L2 clauses
with respect to the L1 clauses. Obviously, the built-in
(intrinsic) engine has as its object the L2 clauses. As a
result, the variables in the L3 clauses range over L2 clauses
and subcomponents. If we think of the L2 variables as
metavariables. then the L3 variables should be thought of
as metametavariables.

Obviously, the variables in the three sets of clauses do not
all range over the same universe of discourse. The
variables in the L1 clauses range over the entities that are
part of a particular problem domain, the L2 variables range
over L1 clauses and subcomponents, and the L3 variables
range over L2 clauses and subcomponents. How are we to
interpret these facts within the standard model-theoretic
framework?

We begin by observing that a theory (Tl) can be
constructed of the L1 and L2 clauses and the UD that the
L1 variables range over (UDl). The universe of discourse
for T1 consists of the entities listed earlier that are a part of
the problem domain being addressed by the expert system.
In this case, the L l clauses form the axioms of T1. Since
the L2 clauses are defined over the L1 clauses, the L2
clauses can be thought of as inference rules for T1. But we
also have the components for a second theory (T2). The L1
clauses and subcomponents can be thought of as elements
of a second UD 0 2) . The L2 clauses become the axioms
for T2 since the L2 variables range over UD2. Since the
variables of the L3 clauses range over L2 clauses and
subcomponents, the L3 clauses can be interpreted as the
inference rules of T2.

Neither T1 nor T2 alone is sufficient for a model-theoretic
interpretation of an expert system, since each theory in
isolation would leave components unaccounted for. In fact,
no single theory is adequate to the task. Consequently, we
must assume that a model-theoretic analysis of expert
systems requires at least a dual theory analysis. But such
an analysis must go further and make explicit the
relationship between the component theories.

We see immediately that T1 and T2 ’overlap’ in that they
share a component. The L2 clauses are present in each
theory. However, the L2 clauses are interpreted differently
in each theory. In T1 the L2 clauses function as inference
rules since the clauses’ variables range over L1 clauses and
subcomponents. In T2 they function as axioms since the
variables range over the theories’ UD. Thus, the L2
clauses serve a dual role.

As a result, the L2 clauses relate two distinct parallel
deductive processes. When a consultation with an expert
system is in progress, two ’proofs’ are being carried out
simultaneously - one within T1 and another within T2.
Within T1 the L2 clauses direct inferences among the L1
clauses (and resulting theorems), and within T2 the L3
clauses direct inferences among the L2 clauses (and
theorems).

There are several benefits to a purely declarative model-
theoretic characterization of the components of an expert
system. First, it satisfies the need to make the declarative
interpretation of these systems explicit. Second, a
declarative analysis serves to bridge the gap between our
relatively high-level conceptualization of expert systems
and their more fundamental structure. Third, it provides an
informative explanation of Harmelen’s observation that the
object-level interpreter is simulated at the meta-level. It
functions as a set of inference rules at the object-level (and
thus exists in the object-theory), but it functions as a set of
axioms at the meta-level (so that it is an integral component
of the meta-theory). Finally, a declarative analysis clearly
shows the relevance of discussions of completeness and

strictness (see [3). Expert systems have as fundamental
components inference rules, which are the true bearers of
these sorts of meta-theoretical properties.

Conclusion

We have attempted a declaratively oriented analysis of pure
meta-level expert systems in terms of the more
fundamental components of logical theories. This analysis
indicates that an expert system can be usefully
characterized as a set of overlapping logical theories. It is
hoped that the characterization is informative with respect
to the basic nature and functioning of such systems.

References

[13 Davis, R. and B. Buchanan. "Meta-Level Knowledge:
Overview and Applications." Readings in Knowledge
Reuresentation. Ed. Ronald J. Brachman and Hector J.
Levesque. Los Altos, California: Morgan Kaufmann,
1985. 389-397.

121 Gallaire, M. and C. Lasserre. "Meta-level control for
logic programs." Logic Programming. Eds. K. Clark
and S. Tarnlund. Academic Press, 1982. 173-188.

[3] Genesereth, M. and N. Nilsson. Lopical Foundations of
Artificial Intelligence. Los Altos, Califomix Morgan
Kaufmann, 1987.

[4] Genesereth, M. and D. Smith. "An Overview of Meta-
Level Architecture." Proceedings of AAAI-83.
American Association for Artificial Intelligence, 1983.
119-124.

[5] Harmelen, F. "A Classification of Meta-level
Architectures." Logic-Based Knowledge
Remesentation. E&. P. Jackson, H. Reichgelt, and F.
harmelen. Cambridge: MIT Press, 1989. 13-35.

[6] Kowalski, R. Logic for Problem Solving. New York
North-Holland, 1979.

[7] Lloyd, J. Foundations of Logic Programming. Berlin:
Springer-Verlag, 1984.

[8] Mendelson, E. Introduction to Mathematical Logic.
Princeton, NJ: Van Nostrand, 1964.

[9] Pereira, L. "Logic Control with Logic." Proceedings of
the First International Logic Programming Conference.
Marseilles, 1982. 9-18.

Relocation Allowance Planning." Proceedings of the
1989 ACM South Central Regional Conference.

[lo] Roach, D., et al. "RAP: An Expert System for

Tulsa, 1989. 106-111.

[111 Roach, D. and H. Berghel. "The Physiology of a
Prolog Expert System Inference Engine." Proceedings
of the 1990 ACM Svmuosium on Personal and Small
Comuuters. Washington, D.C., 1990. [in press].

[121 Welham, B. "Declaratively Programmable Interpreters
and Meta-level Inferences." Meta-level Architectures
and Reflection. Eds. P. Maes and D. Nardi. North
Holland Publishers, 1987.

I67

