
112	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

AFTERSHOCK

Embedded
Software in Crisis
Marilyn Wolf, Georgia Tech

In the wake of several high-profile embedded-

software failures and scandals, we have a

responsibility to ensure that the software

artifacts we design meet high standards and

to reassure users that embedded systems are

reliable, safe, and secure.

Embedded software, the field in which I’ve spent
most of my career, faces an existential crisis. A se-
ries of events have highlighted that the software
we rely upon to operate virtually every category

of critical equipment isn’t trustworthy.

EMBEDDED SOFTWARE FAILURES
The past year has seen at least four significant failures of
embedded software:

›› A person was arrested on suspicion of having hacked
into a United Boeing 737 during an April 2015 flight
from Denver, Colorado, to Syracuse, New York.1

›› Software caused three engines on a Spanish Airbus
A400M Atlas military transport plane to improp-
erly shut down during a flight in May 2015, causing
it to crash and killing four crew members.2,3

›› In July 2015, two researchers
demonstrated how to take over
a Jeep Cherokee using the car’s
telematics system, killing the
engine and disabling the brakes
while a journalist drove the car.4

›› In September 2015, Volkswagen admitted to install-
ing software that defeated the emissions control
system during testing on as many as 11 million
diesel cars going back to 2009.5

These incidents didn’t appear from nowhere—there
have been several other cases of poor embedded-software
performance in recent years. For example, in 2010−11, re-
searchers from the University of California, San Diego, and
the University of Washington showed how to hack a car
by piggybacking on its telematics system, exploiting its
maintenance systems, and inserting a specially encoded
CD into the audio player.6,7 In October 2013, an Oklahoma
court ruled that Toyota was liable in an unintended sud-
den acceleration incident involving one of its cars that
led to the death of one occupant and serious injury of the
other six years earlier.8 Testimony at the trial identified a

	 J A N U A R Y 2 0 1 6 � 113

EDITORS HAL BERGHEL University of Nevada,
Las Vegas; hlb@computer.org

ROBERT N. CHARETTE ITABHI Corp.;
 rncharette@ieee.org

number of problems with the car’s em-
bedded computing systems.9

We expect a lot out of engineered
systems, but clearly we don’t know how
to build embedded software as well as
we thought we did. Such software is
critical to both reliability, which refers
to the probability of system failure,
and safety, which describes the like-
lihood of that system to injure people
or damage property. Embedded com-
puters add security to the mix—an
insecure system is probably both less
reliable and less safe. But embedded
software can affect the reliability and
safety of the overall system without di-
rectly implicating its stecurity.

WHAT WE SHOULD DO
The industry can and should take a
range of measures, both technical
and nontechnical, in the face of these
embedded-software failures. These
measures should have three aims:
first, actually make embedded soft-
ware better; second, instill in orga-
nizations that develop this software
a sense of mission appropriate to its
importance; and third, signal to the
public that the engineering profession
takes these problems seriously.

Assign responsibility to
top company officers
Volkswagen CEO Martin Winterkorn
resigned over the emissions-cheating-
software scandal. Assuming such re-
sponsibility was entirely appropriate
given the company’s high degree of
misconduct, which has severely dam-
aged its reputation and will result in
upwards of tens of billions of dollars
in recall costs and government fines.10

Companies must work harder
to proactively address embedded-
software problems, not just react to
them. This means assigning respon-
sibility for software reliability and
quality control to top-level execu-
tives who can nip such problems in

the bud before they lead to the kind
of crisis Volkswagen is now dealing
with. Many companies have CIOs, but
embedded-software design is very dif-
ferent from information technology.
Perhaps companies that design safety-
critical systems need a new type of
CEO—Chief Embedded Officer.

Increase staff and
put eyes on the screen
At the lower end of the company or-
ganization chart, reliability-centric
design must be properly staffed and
equipped. Numerous tools have been
developed to help software engineers
improve their code; we also need de-
signers to run these tools and to ac-
tively design reliability into systems.
Software reviews—for example, Mi-
chael’s Fagan’s 1976 analysis of code
inspections11—have been known for
decades to improve software quality.
We might want to tweak some well-
established procedures to meet the
challenges of modern embedded soft-
ware, but the principle is easy to apply.

Invest in software artifacts
Software reuse is a fact of life in em-
bedded systems just as it is in enter-
prise computing—when a car has 100
million lines of code, much of that
code will inevitably be reused from
somewhere else. We must architect a
set of software artifacts that can help
us build complex embedded systems.
Relying on open source isn’t enough.
Until recently, common wisdom held
that open source code is better because
more eyes are on it, but the Heartbleed
bug showed that not to be the case.

Designing a foundational set of em-
bedded software units will definitely
take coordinated industry effort; it
might require some government guid-
ance and investment as well.

Make reliability a top-level concern
The traditional mindset in much of
the embedded-systems community
is handcrafted solutions. That mind-
set comes from the tiny devices that
were available decades ago. Today, we
live in a world in which we can put 10
32-bit CPUs on a single consumer-
grade cellphone chip. Thermal en-
ergy and cost continue to be principal
concerns, but we should rethink both
hardware and software architectures
to make reliability an equally high
priority. Judicious use of hardware can
help us design software that is robust
to bugs, attacks, and manufacturing
defects.

Trust but verify
Traditional cybersecurity is necessary
but insufficient. Embedded system

security must guard not just data but
also operation of the system’s physical
plant. Most complex embedded sys-
tems are distributed. The nodes in the
system should monitor one another’s
operation and look for both cyber and
physical errors. Achieving this goal
will require new research.

As engineering professionals,
we have a responsibility to
ensure that the software arti-

facts we design meet high standards.

Companies must work harder to proactively
address embedded-software problems,

not just react to them.

114	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

AFTERSHOCK

We must also reassure users that em-
bedded systems have been carefully
designed and are reliable, safe, and se-
cure. Now is the time to address both
the reality and public perception that
embedded software is in crisis.

REFERENCES
1.	 P. Paganini, “FBI: Researcher

Hacked Plane In-Flight, Causing It to
‘Climb’,” Security Affairs, 16 May 2015;
http://securityaffairs.co/wordpress
/36872/cyber-crime/researcher
-hacked-flight.html.

2.	 P. Paganini, “Airbus—Be Aware a
Software Bug in A400M Can Crash
the Plane,” Security Affairs, 20 May
2015; http://securityaffairs.co
/wordpress/36972/security/airbus
-software-bug-a400m.html.

3.	 R. Chirgwin, “Airbus Warns of Soft-
ware Bug in A400M Transport Planes,”
The Register, 20 May 2015; www.thereg-
ister.co.uk/2015/05/20/airbus_warns
_of_a400m_software_bug.

4.	 A. Greenberg, “Hackers Remotely Kill
a Jeep on the Highway—with Me in
It,” Wired, 21 July 2015; www.wired
.com/2015/07/hackers-remotely
-kill-jeep-highway.

5.	 M. Thompson and I. Kottasova,
“Volkswagen Scandal Widens,”
CNNMoney, 22 Sept. 2015; http://
money.cnn.com/2015/09/22/news
/vw-recall-diesel/index.html.

6.	 K. Koscher et al., “Experimental
Security Analysis of a Modern
Automobile,” Proc. IEEE Symp.
Security and Privacy (SP 10), 2010,
pp. 447−462.

7.	 S. Checkoway et al., “Comprehensive
Experimental Analyses of Auto
motive Attacks Surfaces,” Proc. 20th
USENIX Conf. Security (SEC 11), 2011;
www.autosec.org/pubs/cars
-usenixsec2011.pdf.

8.	 M. Dunn, “Toyota’s Killer Firmware,
Bad Designs and Its Consequences,”
EDN Network, 28 Oct. 2013; www.edn
.com/design/automotive/4423428
/Toyota-s-killer-firmware--Bad
-design-and-its-consequences.

9.	 P. Koopman, “A Case Study of Toyota
Unintended Acceleration and
Software Safety,” slide presentation,
18 Sept. 2014; http:/users.ece.cmu
.edu/~koopman/pubs/koopman14
_toyota_ua_slides.pdf.

10.	 E. Henning and H. Varnhold,
“Volkswagen Assesses Emissions
Scandal’s Impact on Its Finances,”
The Wall Street J., 4 Oct. 2015; www

.wsj.com/articles/volkswagen
-evaluating-emissions-scandals
-impact-on-companys-finances
-1443980626.

11.	 M.E. Fagan, “Design and Code
Inspections to Reduce Errors in
Program Development,” IBM Systems
J., vol. 15, no. 3, 1976, pp. 182−211.

MARILYN WOLF is a professor, a
Georgia Research Alliance Eminent
Scholar, and the Rhesa “Ray” S.
Farmer, Jr., Distinguished Chair of
Embedded Computing Systems
at the School of Electrical and
Computer Engineering, College of
Engineering, Georgia Institute of
Technology. Contact her at wolf@
ece.gatech.edu.

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Author guidelines:
www.computer.org/software/author.htm
Further details: software@computer.org
www.computer.org/software

Call for Articles

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

